Cognitive Electronic Warfare: Real-time Decision Making for Electromagnetic Warfare

Dr. Karen Zita Haigh

2023-04-12, Tokyo, Japan

Japan Self-Defense Forces and the EW Community

kzhaigh@gmail.com

Notes based on the book *Cognitive EW: An AI Approach* by Haigh and Andrusenko [ArtechHouse, 2021]

1 Distribution A (Approved for Public Release, Distribution Unlimited, 2 March 2021, DISTAR case 34014)

Cognitive Who Am I – Dr. Karen Zita Haigh Warfare Who Am I – Dr. Karen Zita Haigh

- Consultant for Cognitive EW and Embedded AI
 - kzhaigh@gmail.com
 - https://www.linkedin.com/in/karenhaigh/
 - <u>https://sites.google.com/site/kzhaigh</u>
- PhD in Computer Science from Carnegie Mellon University (AI and Robotics) BSc (Honours Computer Science) from University of Ottawa
- 30+ years experience in embedded Al Pioneer in Cognitive EW
 - Mercury Systems, L3Harris, Raytheon BBN, Honeywell
- IEEE Fellow, AAIA Fellow, Member of AAAI and AOC
- Published numerous articles in technical journals and conferences
- Published three books
 - The Dinner Co-op Cookbook (1997)
 - Scripting Your World (2008)
 - Cognitive EW (2021)

US Book Orders: https://us.artechhouse.com/Cognitive-Electronic-Warfare-An-Artificial-Intelligence-Approach-P2208.aspx

Cognitive
Electronic
WarfareWhat is Electronic Warfare (EW)?

- Coordinated actions involving the Electromagnetic Spectrum (EMS)
 - Radio, radar, infrared, electro-optical, ultraviolet
 - To exploit, attack, protect, and manage the EMS
- Joint All-Domain Command & Control (JADC2)
- Land, sea, air, space
- EMS + acoustic + cyber + optic + ...?
- Multi-node, multi-task coordination
- Military + Civilian

kzhaigh@gmail.com

EW Events in Civilian Settings

- 9/11 "Mass Call Event"
- Emergency management
- Border security / Coast guard
- Law enforcement
 - Rioters jamming Police radios
 - Police tracking and jamming criminals
- Aviation:
 - Airport Command & Control
 - Drone Incidents at Airports
 - 2018: Gatwick
 - ۰.
 - 2021: 70 global incidents
 - 2022: 2,554 global incidents
 - 2023: FAA currently reporting >100 events each month.
- FAA Federal Aviation Administration

https://www.researchgate.net/publication/342401654_Defending_Airports_from_UAS_A_Survey_on_Cyber-Attacks_and_Counter-Drone_Sensing_Technologies

Electronic Warfare **EW for Disaster Response**

2010 Haiti Earthquake

Coordinate Aid

Find victims

- Connect disparate networks
- Manage bandwidth
- Monitor evolving situation
- Coordinate and Prioritize Tasks
- Learn from experience
- Keep nefarious users out

Derived From: Haigh, AI for the Perplexed: An L3 Perspective, invited presentation to the L3 WESCAM Drone Swarm Hackathon, Ontario, 2019.

Electronic Warfare Electronic Warfare Electronic Warfare World

Software- and AI-defined Operations

- Software update cycles allow reconfiguration in hours
- Software-defined platforms support rapid reconfiguration
- Al allows the EW system to change everything at sub-second timescales
 - Decision-making can happen in milliseconds
 - Learning can happen in milliseconds, from a single training example
 - AI capabilities are exploding
- AI, Autonomy and Unmanned systems have redefined the speed of the kill-chain

Example: NASA Shuttle Columbia

- After the explosion, NASA wanted more sensors on remaining shuttles
 - 4 seismic sensors on each of the 22 wing leading-edge panels
- But the existing data on the Columbia showed that the wing had a problem
- It wasn't a hardware problem, it was data analytics problem

https://picryl.com/media/a-left-front-view-of-the-columbia-space-shuttle-orbiter-landing-a1ceff

Cognitive Electronic Warfare The Vision of Cognitive EW

- Imagine an AI that knows how, when and where to act before an Electronic Warfare Officer can even understand what is happening
 - AI/ML can understand patterns in data that humans can't see
 - AI/ML can make decisions faster than humans
 - AI/ML can make decisions for more complex settings

$EW \rightarrow War$ at the speed of light

Cognitive Electronic Warfare: An Al Approach

- Traditional approaches to EW are failing in modern engagements
 - Timeline is too fast
 - Complexity is too high
 - No methods handle novel emitters
- Automatically learn to select actions that improve performance even in novel RF environments
 - Characterize the RF conditions
 - Choose the best strategy to improve mission performance
 - Learn performance of available strategies

From Cognitive EW: An Al Approach by Haigh and Andrusenko [ArtechHouse, 2021]

Apr 2023

Cognitive

Electronic Warfare

Derived from Haigh, AI for the perplexed: How does AI apply to you?, Underwater Intervention, New Orleans, LA, Feb 2020.

9 © Dr. Karen Zita Haigh

Apr 2023

Cognitive

Electronic Warfare

Cognitive Electronic Warfare

Al Concepts in the EW World

EW Term	
Electronic Support (ES)	
Electronic Protect and Attack (EP and EA) Electronic Battle Management (EBM)	
Electronic Battle Damage Assessment (EW BDA) Effects Analysis	
EW Reprogramming (of data and software)	

From Cognitive EW: An Al Approach by Haigh and Andrusenko [ArtechHouse, 2021]

Key Al Concepts

Situation Assessment

- Understand the environment
- Time, space
- Impact
- Steps:
 - Collect the data
 - Validate the observations
 - Fuse the data
 - Analyze the Impact
 - Infer the intent

Decision Making

- Set Goals and Priorities
- Analyze tradeoffs
- **Resolve conflicts**
- Determine plans
- Feasible methods to achieve goals

Learning

- Extract information from prior experience
- Update models
- Evaluate effectiveness of previous decisions
 - Your own impact on the environment

Modern EW Challenges Require AI Solutions

- Dynamic
 - Observations are fleeting
 - Decision timeline very fast
- Novel conditions
- Mission progression (e.g., team composition)
- **Resource-constrained**
- Time
- Size, Weight, Power, Compute, and Memory
- Expendables

- Complex
 - Richness of RF environment
 - Disparate data sources
 - Heterogeneous platforms
 - Ambiguous observations
 - Interactions of control settings
 - Multiple temporal feedback loops
- Distributed
 - Unreliable communications
 - Heterogeneous sensors & platforms
 - Multiple objectives for multiple stakeholders

AI Capabilities in EW Systems

Cognitive

Electronic Warfare

AI Addresses Joint Optimization (JADC2)

- AI uses the same process to analyze the RF environment and make multi-objective decisions for unified multidomain solutions
- Actions come from same toolset

- **EP vs EA:** the main difference is the mission objective
- EP defines objectives with respect to oneself
- EA defines objectives with respect to **others** (i.e., harder to measure)
- **Comms vs Radar:** the main difference is distributed decision making
 - Comms has more latency, more coordination, and more nuanced utility functions

From Cognitive EW: An AI Approach by Haigh and Andrusenko [ArtechHouse, 2021]

Apr 2023

Cognitive

Electronic Warfare

Complex Decision-making to Manage Tradeoffs

- Planning & Scheduling is a branch of AI that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. [Wikipedia]
- Does the environment change?
- Are observations ambiguous?
- How many objectives must be satisfied?
- How many actors participate?
- How many actions are available?
- Are actions deterministic?
- Do actions have durations?
- Can actions be taken simultaneously?

https://en.wikipedia.org/wiki/Arctic shipping routes

Cognitive

Electronic Warfare

kzhaigh@gmail.com

16 © Dr. Karen Zita Haigh

Cognitive Electronic Warfare Decision Making

- Protracted engagements must manage
 - Multiple Objectives (that may be conflicting)
 - Limited Resources
 - Ignoring resources creates plans that may not be achievable, and/or need to be updated based on execution monitoring
 - Multiple and/or extended timeframes
 - Temporal planning and resource planning are tightly coupled

Do not be reactive Be proactive and deliberate

From Cognitive EW: An AI Approach by Haigh and Andrusenko [ArtechHouse, 2021]

Decision Making Considerations

Inputs

Rules of Engagement	Environment	Operating Constraints	Available Assets	Cooperation with other organizations
Commander	Mission	Expected	Attack Library	Desired
Intent	Model	Threats		Effects
Outputs				
Asset	Spectrum	EP and EA	Human	Inter-
Allocations	Sensing Plan	Planning	Interactions	operability

From Cognitive EW: An Al Approach by Haigh and Andrusenko [ArtechHouse, 2021]

Decision-Making Approaches in Al

Planning

- Planning synthesizes a sequence of actions that result in a desired goal state.
- Planning is what to do, and in what order, as a partiallyordered graph.
- Planning is more strategic, more global.
- An EBM system plans how many platforms to deploy, which resources each gets, and where they will go.

Optimization

- Optimization evaluates multiple plans to choose the "**best**" plan.
- Optimization is more tactical, more local.
- An EW system optimizes EP and EA metrics like power usage, probability of detection, and EW BDA.

Scheduling

- Scheduling maps a partiallyordered plan to specific resources and timeslots.
- Scheduling worries about
 when and how to do things.
- Scheduling drives down into the specifics of when to transmit and when to receive.

When these activities are fully automated, they are not clearly delineated

Planning Approaches

From Cognitive EW: An Al Approach by Haigh and Andrusenko [ArtechHouse, 2021]

Apr 2023

20 © Dr. Karen Zita Haigh

Example: Hierarchical Task Planning

HTNs are a set of abstract **tasks** to be done, and a set of **methods** for each task that represent different ways in which they can be carried out.

The dependency among actions is represented with hierarchically structured networks.

From Cognitive EW: An AI Approach by Haigh and Andrusenko [ArtechHouse, 2021]

Cognitive Electronic Warfare Multi-objective Optimization (Constraint Planning)

- Formulate the problem using one of two methods:
 - (a) Maximize Effectiveness subject to constraints on Cost, or
 - (b) Minimize Cost subject to constraints on Effectiveness.
- While mathematically equivalent, these two formulations lead to different practical issues.

• A goal of $Cost < m_1$ and *Effectiveness* > m_2 determines an optimal operating point.

Example: Navy Mission Planner

- Creates logistically supportable ship employment plans to maximize anticipated military mission accomplishment
- Assign ships and other assets each day to each region to complete missions on time
- Diverse missions, including logistics and unarmed combatants
- Easily extensible to incorporate EW
- Complex dependencies + interactions between missions

- Linear Integer Directed Network Flow
 Optimization Model
 - > 1000 constraints, > 70000 variables
 - < 60 minutes for "clean sheet" plans</p>
- Maximize the total value while satisfying constraints on mobility, simultaneous and conditional mission completion, resource use, and varying effectiveness of combatants and their assignments.
- Persistence over plan revisions

Kline & Brown, Optimizing the Navy Mission Planner, Military Operations Research, 2021, https://faculty.nps.edu/jekline/docs/Optimizing%20Navy%20Mission%20Planning.pdf

Apr 2023

Cognitive

Electronic Warfare

Scheduling

- Maps a partially-ordered plan to specific resources and timeslots
 - Generally, when to transmit and when to receive

Requires

- Sequence of actions and their resource requirements
- Set of resources that can be used
- Constraints
- Objective function

- Approach must account for unexpected, unknown, or partially-observable states
 - Flexibility and (Re)prioritization are key

Real-time Operations

25 © Dr. Karen Zita Haigh

kzhaigh@gmail.com

Cognitive Electronic Warfare

Execution Monitoring: Is everything going as expected?

Changing Mission Priorities

Policy-Based Control

- A **policy** is a way to express statements about what to prefer or avoid in a domain
- Capture stakeholder intent
- Capture multiple stakeholder tradeoffs
- Propagate high-level goals down to operational level
- **Policy statements** are heuristics with asserted, quantitative values
- Can be rigorously mapped to a mathematical objective function

Policy Bundle

- Related policy statements for a given situation
- Created offline or derived from mission plan
- Invoked at run-time by user

Policy-Bundles

- Commander: Recon, Battle, Peacekeeping
- Soldier: Covert, Battery, Critical Ops

From Haigh, Olofinboba, & Tang, "Designing an Implementable User-Oriented Objective Function for MANETs," in IEEE International Conference On Networking, Sensing and Control, April 2007. <u>http://www.cs.cmu.edu/~khaigh/papers/Haigh07-ICNSC.pdf</u>

Example: Locally Optimized Scheduling

Y axis = node X axis = Time Cell = allocated Tx slot

Locally-optimized schedule

Update because, e.g.,Replanning (no info

- to send)
- Learning (no signal)

Cognitive Electronic Warfare

Closing the Loop: Real-Time In-Mission Cognition

Electronic Support

- Update histories and probabilities based on mission progress
- Identify novel conditions

Battle Damage Assessment

- aka Effects Analysis
- Compare expected effects to observed effects

Decision Making: Replanning

Update actions based on changing conditions

Decision Making: Reinforcement Learning

 Use experience to update expectations and choose actions based on expected reward

From Cognitive EW: An AI Approach by Haigh and Andrusenko [ArtechHouse, 2021]

In-mission Learning is the Decisive Element

- We can't afford to only learn postmission
- Novel emitters may be lethal in subminute timescales
- We already *have* systems that learn inmission

- Therefore
 - We must develop approaches that can learn from a *single observation*
 - We must validate the *learning process*, rather than validating the learned model
 - Automated, Closed-loop, multiresolution testing is crucial
 - We need a CogEW *Red Team* to create threats

Cognitive

Electronic Warfare

Evaluation and Assurance

Developing trust

31 © Dr. Karen Zita Haigh

kzhaigh@gmail.com

Trust depends on how much Risk the Trustor can Tolerate

- Human-Machine Teaming develops trust
 - Complementary team-mates
- Framework must support
 - Accountability to humans
 - Cognizance of speculative risks and benefits
 - Respectfulness and security
 - Honesty and usability
- The more risk for trustor, and authority to AI, the greater the assurance requirements

Learning Assurance Design Requirements

Use a Learning Assurance process to ensure comprehensive evaluation

Validate the learning *process*, not the learned *model*

Used with permission from J. Cluzeau et al., Concepts of design assurance for neural networks (CoDANN), European Union Aviation Safety Agency

Cognitive

Electronic Warfare

Cognitive Electronic Warfare

Can we Certify In-Mission Learning?

Kalman Filters

- Predictive filtering ML technique
- e.g., to compute the position and altitude of aircraft
- ML Characteristics
 - Statistical estimation process
 - Behaviour depends on empirical data and on hypotheses on the inputs
 - Outputs are associated with an estimation of the result quality
 - Key characteristics
 - Input space is usually small
 - Uses an embedded model of the physical system
 - Errors are estimated based on physical models representing upper bounds of actual errors.

Certification Approach

- DO-229 Standard
 - "Minimum Operational Performance Standards for Global Positioning System/Satellite-Based Augmentation System Airborne Equipment"
 - US Radio Technical Commission for Aeronautics (RTCA)
 - Validation recommendations
 - Type and number of tests
 - Based on statistical knowledge of operating environment

Vision: Attritable, Unmanned Fleets

Capability

- Large-scale (expensive; exquisite) operations are untenable
- Contested EMS battlespace; Cyber; Acoustic
- Multidomain: Air, Sea, Land, Space
- Civilian and Military applications
- Small, inexpensive, unmanned vehicles (UxVs) to perform a variety of functions, including ISR, PNT, communications, and strike.
- The best counter to an expendable drone swarm is another expendable drone swarm

Justification

- 96 drones form concentric patterns around the Dewey that continuously shift while individual drones make swooping passes on the destroyer's pilothouse, bow, and flight deck.
 - The Dewey's commanding officer determines that the behavior of the drones and the PAFMM vessels constitute a real, immediate, and direct threat to the safety of the ship and crew
- RAND report outlines a possible deployment on Kyushu Island, near Japanese Defense Forces' Nyutabaru Airbase

PAFMM -- People's Armed Forces Maritime Militia ISR – Intelligence, surveillance, and reconnaissance PNT – Position, navigation & timing Thornburg, Responding to Drone Swarms at Sea, 2022, <u>https://www.usni.org/magazines/proceedings/2022/december/responding-drone-swarms-sea</u> Hamilton & Ochmanek, Operating LowCost, Reusable Unmanned Aerial Vehicles in Contested Environments, RAND report, 2020, https://www.rand.org/content/dam/rand/pubs/research_reports/RR4400/RR4407/RAND_RR4407.pdf

Next Steps Embrace the change

© Dr. Karen Zita Haigh

Cognitive Electronic Warfare National Security Strategy Requires Both EW+AI

Take Small Steps Along the Cognition Spectrum

Does your system need better situation assessment? Deeper understanding of the RF environment, the anomalies, and the intent of the emitters?

- Does your system need better
 decision making? Something
 that can adapt to changing
 conditions and surprises?
- Does your system need to learn from its mistakes?

Cognitive

Electronic Warfare

"Artificial intelligence could be the most transformative technology in the history of mankind"

Kai-Fu Lee (李開復), 14 September 2021

- BSc, Computer Science, Columbia
- PhD Computer Science (Speech), Carnegie Mellon University 1988
 - Advisor: Raj Reddy

- Chairman and CEO of Sinovation Ventures, the leading Chinese technology venture capital company
- In 2018, Sinovation Ventures' asset management reached US\$2 billion and has invested over 300 portfolios primarily in China

"Artificial intelligence could be the most transformative technology in the history of mankind"

Kai-Fu Lee (李開復), 14 September 2021

- Disrupt or Die
- We cannot afford to be complacent
- Think ahead to discover new routes to innovation

Linker, 2014, *The Road to Reinvention: How to Drive Disruption and Accelerate Transformation* Christensen, Raynor, 2013, *The Innovator's Solution: Creating and Sustaining Successful Growth* Yueh, 2017, *Disrupt or Die*

Summary: Embrace the Future

Main Points

- Reasons for Cognitive EW
- Speed of decision making
- Complexity of control
- Multi-domain coordination
- War at the speed of light
 - Software updates
 - Al updates
- Demographic Challenge
- Unmanned systems

Resources

Book

- K. Z. Haigh and J. Andrusenko, Cognitive EW: An AI Approach, 2021. Artech House (USA and UK)
- AOC Webinar (1 hour, On-demand)
 - https://www.crows.org/page/CognitiveEW-AlCourse
- AOC Course (6-sessions, 18 hours, On-demand)
 - <u>https://www.crows.org/page/CognitiveEW-AlCourse</u>
- Regular upcoming speaking events
 - https://sites.google.com/site/kzhaigh

Backup

© Dr. Karen Zita Haigh

kzhaigh@gmail.com

Cognitive Electronic Warfare **Assessing the Need for Al Capabilities**

From Cognitive EW: An AI Approach by Haigh and Andrusenko [ArtechHouse, 2021]

Decision Making Advanced Concepts

Optimality

- "Good" is usually good enough
- Both mathematically and pragmatically

Anytime Decision Making

- Best decision for time available
- Better solutions the longer they run

Deliberate Sensing & Communication

- Actions to improve information quality
 - Reduce information uncertainty
 - Purpose is better ES (not better EP or EA)

Game Theory

- When outcomes depend on the reaction of others
 - Cooperative
 - Non-cooperative
- Introduce reasonable randomness

Challenges to Fielding AI (not just in EW)

- Policies
 - Freedom to innovate
 - Speed of AI vs Acquisition cycle
- Manned vs Unmanned force design
- Requirements must outline system goals
 - Novel threats
 - Capability tradeoffs and limitations
- Trust
- Pragmatic action vs Provable performance

- Data Management
 - Data Portal, Data Formats
- Models
 - Threat-representative
- Continuous Test
 - DevTestSecML...Ops
- Vertical Test Frameworks
 - Automated, closed-loop, multi-resolution test frameworks